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Abstract

The non-conservative stability of non-uniform columns under the combined action of concentrated and variably
distributed forces is solved analytically. Two types of follower force system are considered: (i) concentrated follower
forces and variably distributed follower forces, (ii) concentrated follower forces and variably distributed conservative
forces. The exact solutions for stability of four kinds of one-step non-uniform columns subjected to the two types of
follower force system are derived for the first time. Then a new exact approach, which combines the exact solutions of
one-step columns and the transfer matrix method, is presented for the non-conservative stability analysis of multi-step
non-uniform columns. The advantage of the proposed method is that the resulting eigenvalue equation for a multi-step
non-uniform column with any kinds of two end support configurations, an arbitrary number of spring supports and
concentrated masses can be conveniently determined from a second order determinant. The decrease in the determinant
order, as compared with previously developed procedures, leads to significant savings in the computational effort. A
numerical example shows that the results obtained from the proposed method are in good agreement with those de-
termined from the finite element method (FEM), but the proposed method takes less computational time than
FEM. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Lightweight structural members have been extensively used in many industrial fields such as in civil,
mechanical and aerospace engineering, and therefore the stability problems of such structural members are
of increasing importance. The applied loads are regarded as non-conservative forces if the work done by
them is path-dependent. Practical examples of non-conservative forces include: (1) the acrodynamic drag
forces acting on the body of rockets, missiles and other flight vehicles; (2) the forces acting on the rotor of a
gas turbine; (3) the forces acting on the links and elements in automatic control systems (Bolotin, 1963).
Meanwhile, a cantilever pipe conveying fluid is an example of a system subjected to follower forces (Sug-
iyama et al., 1999). Therefore, it is obvious that the concept of follower force is very important not only in
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aerospace engineering, but also in automobile engineering, and certainly also in the area of fluid-structures
interaction technologies (Sugiyama et al., 1999). In fact, elastic systems subjected to non-conservative forces
are always encountered in engineering practices. Thus, stability analysis of elastic structural members under
non-conservative forces is important in modern engineering applications.

The non-conservative stability of an elastic uniform bar was first investigated by Nikolai (1928). Beck
(1952) studied the stability of a uniform cantilever column subjected to a follower force at the free end.
After Beck’s work, many similar, but extended problems were investigated. For example, the stability
problem of an elastically restrained-free Beck’s column subjected to an end follower force was investigated
by Simkins and Anderson (1975). Sundarajan (1976) studied the influence of an elastic end support on the
stability of Beck’s column. Pedersen (1977) examined the effect of a concentrated mass attached to the
elastic support on the stability of Beck’s column. Chen and Ku (1991) studied the stability of a uniform
Timoshenko cantilever column subjected to follower force at the free end. McGill (1971) considered the
stability problem of a uniform cantilever column under distributed vertical and follower forces using the
Galerkin method. Sugiyama and Kawagoe (1975) studied the stability of elastic uniform columns with six
typical boundary conditions subjected to combined action of uniformly distributed vertical and tangential
forces by means of the finite difference method.

Much work has been done to investigate the stability of uniform structural members under follower
forces, however, non-conservative stability of non-uniform columns received relatively less attention in the
past. In fact, structural members with variable cross-section are frequently used in engineering practices to
optimise the distributions of weight and strength. Massey and Van der Meen (1971) studied the stability of
tapered cantilever columns subjected to a tangential tip load for breadth taper only. The effect of taper on
the non-conservative stability of columns was studied by Sankaran and Rao (1976) using the finite element
method (FEM). The stability problem of a non-uniform Timoshenko beam with clamped-free and elasti-
cally restrained-free boundary conditions subjected to three types of follower forces was solved by Irie et al.
(1980). Lee and Kuo (1991) investigated the elastic stability of three different tapered columns subjected to
uniformly distributed follower forces by dividing a non-uniform column into several uniform segments to
simplify the stability analysis. It is revealed from the above cited references that the previous studies have
generally concentrated their investigations on the stability of columns subjected to uniformly distributed
follower forces. The stability problem of non-uniform columns, especially multi-step non-uniform columns,
under variably distributed follower forces has rarely been studied. It is noted that the exact solution for
such a problem has not been proposed in the past.

Literature survey indicates that the non-conservative stability of multi-step non-uniform columns was
usually solved using numerical or approximate methods. In this paper, the non-conservative stability of
non-uniform columns under the combined action of concentrated and variably distributed forces is solved
analytically. Two types of follower force system are considered in this paper: (i) concentrated follower
forces and variably distributed follower forces, (ii) concentrated follower forces and variably distributed
conservative forces. The exact solutions for stability of four kinds of one-step non-uniform columns
subjected to the two types of follower force system are derived for the first time. Then, a new exact
approach, which combines the closed-form stability solutions for a one-step non-uniform column and the
transfer matrix method, is proposed for the non-conservative stability analysis of multi-step non-uniform
columns. The advantage of the proposed method is that the resulting eigenvalue equation for a multi-step
non-uniform column with any kinds of two end support configurations, an arbitrary number of spring
supports and concentrated masses can be conveniently determined from a second order determinant. As a
consequence, the decrease in the determinant order, as compared with previously developed procedures,
leads to significant savings in the computational effort. Numerical example demonstrates that the results
obtained from the proposed method are in good agreement with those determined from FEM, but the
proposed method takes less computational time than FEM, illustrating the present method is exact and
efficient.
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2. Theory
A multi-step non-uniform column under the combined action of concentrated follower forces at the end

of each step and variably distributed follower forces along the column is shown in Fig. 1. The governing
differential equation for stability of the ith step column can be written as

— ()M (x) = 0 (1)

d? d*X;(x) d’X;(x)
s[RI T2 | o S

where X (x) is the mode shape function and w is the circular natural frequency, K(x), N(x) and 7i(x) are the
flexural stiffness, axial force and mass per unit length, respectively, the origin of the co-ordinate is set at the
top end of the ith step column (Fig. 1).

If the variably distributed forces are the conservative loads, Eq. (1) should be replaced by

< i dzf;ﬁx’} 5 M S| = merx) =0 @

In this paper, two types of follower force system acting on multi-step non-uniform columns are considered:
(1) concentrated follower forces and variably distributed follower forces (type 1), (i) concentrated follower
forces and variably distributed conservative forces (type 2). The governing differential equations for the
non-conservative stability of a non-uniform column subjected to the type 1 and type 2 kinds of follower
force are Egs. (1) and (2), respectively.

The general solutions of Egs. (1) and (2) can be expressed in the following form

Xi(x) = CuiSii(x) + CoiSai(x) + C3;S3i(x) + CaiSai(x) (3)

where S;;(x) and C; (j = 1,2, 3,4) are linearly independent solutions and integral constants of Eq. (1) or Eq.
(2), respectively. Obviously, it is difficult to derive the closed-form solutions to Eq. (1) or Eq. (2) for general
case, since S;(x) are dependent on the expressions of K;(x), N;(x) and 7;(x). The analytical solutions may be
obtained by means of reasonable selections for K;(x), N;(x) and ;(x). As suggested by Li et al. (1994, 1998)
and Li (2000), the functions for describing the variations of K(x) and m(x) for many non-uniform structural
members are power functions and exponential functions. Hence, the following four cases of K;(x), N;(x) and
m;(x) which cover many cases of non-uniform columns are considered.

Case 1. The distributions of flexural stiffness, axial force and mass per unit length of the ith step column
are described by the following power functions

N;(0)
Ki(0) Ni(0) my(0)
K2(0) N2(0) my(0)
Ki(0) Ni(0) my(0)
K4(0) Ng(0) my(0)
(b) () (d)

Fig. 1. A multi-step column.
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where K;(0), N;(0) and m;(0) are the flexural stiffness, axial force and mass per unit length of the ith step
column at x = 0, respectively, f and n are parameters that can be determined by the values of K(x), N(x)
and m(x) at x = L;/2 and L; or at the other control sections, L; is the length of the ith step column.

The four linearly independent solutions of Eq. (2) for this case are found as
S$1i(x) = mlu(my)

SZI( ) - ’711 (’1]1)

S3l( ) - ’/’21 (1721)
(x
(-

n = integer (5)

S47 ) - ’/’21 (’721)

where J,(+), Y,(-), I,(-) and K,(-) are Bessel functions of the first, second, third and fourth kinds, respec-
tively, #,; and #,; are given by

M =2y /1 + Bt o = 2oiy 1+ Bifs

_2 — 2 4
Al = B\/Za 21 = Nei + Nei + Wej

] 2 2 4 (6)
Ao = pNFais Zui = Nei — /N + o
() _ mi(0)e?
Nei = 2K:(0) * Wy = K:(0)
Case 2. K;(x), N;(x) and m;(x) are given by
) n+4
Ki() = Ki(O)(1+ 8,3 )
n+2
Ni(x) = N(0)(1+ 8,7 (7)
7i(x) = 7 (0)(1+ B, )
The four linearly independent solutions of Eq. (2) for this case are
X Vji
S,,:(l—&—ﬁiz) j=1,2.34 (8)
where
i = — n;l + (”J:‘l)_ + Wy — Nfl
n 2
Y2 = _%_ (El) + w5 — Np
n (”+1)2
V3 = +1+ — Wy _Nfz
N 9)
v === [ -0 = Ny
ﬁ,(O)tusz
W = g+ N, og = F7K:(0)
Ny (0)12
Np=3(Ng—n—-2), Ng= ﬁz )<L’)
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The solutions expressed by Eq. (8) are valid for the case that y; (j = 1,2, 3,4) are real value roots only. It
can be seen from Eq. (9) that since w; > Ny, y, and 7, are real value roots. If y;; and y,; are complex values,
S3i(x) and Sy;(x) should be written as

—(n+1)/2 2
. 1
Sy(x) = (1 +ﬁ,%> sin \/wﬁ+Nﬁ— ("Z Cn (1 +ﬁ%> (10)

—(n+1)/2 2
1
S4,-(x): (14’[3,%) cos\/wﬁ+Nﬁwln (14’[31%) (11)

The four linearly independent solutions of Eq. (1) for this case can be written in the form

Z i €Xp yﬂ (12)

where

& =In (1 +Bi%>
1i2i 3048 = ; (”t +4+ \/7) \/ (n, +4+ \/7> (ylz + \/ylz 4e )

2 m,(0)w*L? oy N;(0)L?
e:_@ azi:L, fmnt Aty /3 oy — <>,

\*/+ / qz pz \/ / qz pz 4%

o d¢; 203 ;i
P == 4 4 —_— — —17 P = 4 —_—
q /3? < + ﬁi>+ 3] 77 =+ )(n+3)+ﬂ2

Case 3. The distributions of flexural stiffness, axial force and mass per unit length are described by the
following exponential functions

Ki(x) = Ki(0)exp (b3 )
Ni(x) = Ni(0) exp (i) (14)
i (x) = 7 (0) exp (b, )

The four linearly independent solutions of Eq. (2) for this case are derived as follows

Sji(x) = exp (Vﬁf)

Y = % \/ 7 T 22
Vo = %— \/——Zz, (15)
V3 = \/ + T2

2
b [7-
T\ 7 Zu

i

/N

Vai =

where z;; and zy; are given by Eq. (6).
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It is evident that the above solutions are only valid for the case that y; (j = 1,2, 3,4) are real value roots.
Since zy; < 0, y;; and 7,; are real value roots. If ?/4 < zy;, 73; and y,; are complex value roots, for this case
S5i(x) and Sy(x) should be determined by

bix\ . b? x
S3i(x) = exp (i) sin < zy; — ZE) (16)

bix b? x
S4(x) = exp (2L-) cos < zy; — ZZ) (17)

The four linearly independent solutions of Eq. (1) for case 3 can also be expressed by Eq. (12), but the
parameters involved should be determined by the following equations

2
1 (b, N(0) 1 (b, N\ 1 ——
inig = —— | — - +.4= =+ S i -+ 2 _ 4e. 1
V11,21,3z,41 2 <L1 Vi Kz(0)> 4 (Lz Wi K,(O) P i Vi €; ( 8)

where ¢; = —(m;(0)w?/K;(0)), vy, is given by Eq. (13), but the parameters involved should be determined by

— di _ Ni(0) 24}
qi —4€i[§—m] — 37

_ d _ (5 L N
pi=4e — =%, di—(f,.) + %0

If 4b;/L; > 2d,, the sign before \/yl,- — (N:(0)/K;(0)) should be the same as that before v/y;; — 4e;, otherwise
the signs must be different between each other.

Case 4. Ki(x)=K;, Nix)=N;, mx)=m (20)

(19)

This special case represents a stepped uniform column. The four linearly independent solutions of Egs.
(1) and (2), which are the same for this case, are found as

Sl,-(x) = sin k],-)C
S$ri(x) = coskyx
S3,-(X) = sinh kz,-X
S4i(x) = cosh kyx

(21)

where
b= a1+ () +1

kQ[:;Ll[ 1+(£ 71

2 N; k2 miey

M Tk K K

If the distributions of flexural stiffness, axial force and mass per unit length of the ith step column do not
obey the assumed expressions given in the above four cases, this step column should be divided into several
segments such that the distributions of flexural stiffness, axial force and mass intensity in each of the
segments may match accurately or approximately one of the expressions described in the four cases. The
eigenvalue equation for the non-conservative stability of a multi-step non-uniform column can be conve-
niently established using the general solution, Eq. (3), the boundary conditions and the transfer matrix
method to be introduced below. The FEM is usually considered as the most general approach for both
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static and dynamic analysis of structural systems. However, as pointed out by Sato (1980), the transfer
matrix method has some advantages in computation: ease of programming, small memory requirements,
and availability of ready-made transfer matrix catalogues for various elements. It will be shown through a
numerical example in this paper that one of the advantages of the present transfer matrix method is that the
total number of segments required could be much less than that normally needed in FEM analysis.

Using the general solution, Eq. (3), the mode shape functions of displacement X;(x), rotation 0;(x),
bending moment M;(x) and shear force O;(x) can be expressed in a matrix form as follows

Xi(x) Cu
0,*()(?) o C2i
Mi(x) = [Si(x)] Cy; (23)
Oi(x) Cyi
where
M
SOI= | ks ébs;x 0 KOS K©S) 24
RS K ©S 0] K @S0 K @S]

The relation between the parameters X;;, 0;, M;; and Q;; at the end x = L; and the parameters Xy, 0;, My
and Q; at the end x = 0 of the ith step column can be expressed as

Xit Xio
0; 0;
MI;1 = [7i] MI,OO (25a)
On On
where
(73] = [Six)][S:(xi0)] ™" (25b)

Xil :Xi(Li), 0;1 = Oi(Lt)’ A/[il :A/[[(Li), Qil = Qi(Ll)

Xo =X;(0), 0,=0;(0), Mpo=M;(0), QOn=0i0)

[77] is called the transfer matrix because it transfers the parameters at the end x = x; to those at the end
x = x;1. It is well known that the displacement, rotation, bending moment and shear force at the common
interface of two neighbouring steps are required to be continuous, i.e.,

Xio = Xi-n1, O =041, Mgo=Mi;y, On= Qi (26)
Substituting Eq. (26) into Eq. (25a) leads to
[ X1 ] Xi—n1
Oq | Oi-11
My | 7] M_1y (27)
| On | Q-1
Using Egs. (25a) and (27) yields
P Xii-10
01 Oi-1y0
= [T}[T;- 28
M; [7iTi-1] M 1y (28)
| On | Qi-1)0
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The relation between the parameters X, 0,1, M, and Q,; at the end of the last step column x = L, and the
parameters X, 60, Mo and Qy at the end of the first step column x = 0 can be established using Egs. (25a)
and (27) repeatedly as follows

Xq Xio
v | =] (29)
o O
where
(7] = (1T, 1)+ (17 (30)

and [T] has the following form

Ty T Tz Ty
Ty Tn Ty Ty
Thy T Tz Ty
Ty Tp Tz Ty

The elements 7;; (i,j = 1,2,3,4) of [T] can be determined from Eq. (30).

If there are a lumped mass, a rotational spring (with stiffness K,;) and a translational spring (with
stiffness K,;) attached at the interface of the (i — 1)th step column and the ith step column, the displacement,
rotation, bending moment and shear force are required to satisfy the following conditions (Fig. 2)

Xio = Xi-1)1
0,‘ = 0 i—
0= 0u-1n (32)
My = Mi—1y1 — Kpili-1y
0w = Q-1 — (mw* — Kui) X1

Koi iX iy

Mio

Fig. 2. The forces acting on the boundary between the (i — 1)th step column and the ith step column.
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For this case the transfer matrix [7;] should be replaced by

1 0 0 0

0 1 0 0

2

—(m,'(}) — Kui) 0 0 1

The eigenvalue equation for the non-conservative stability of a multi-step non-uniform column can be
established using Eq. (29) and the specific boundary conditions as follows

1. A multi-step cantilever column shown in Fig. 1.
The boundary condition for this case are given by

My =0, Q10=0 (34)
Xp =0, 0,=0 (35)
Applying the boundary conditions, Eq. (34), to Eq. (29) leads to
X1 Tw Ty Tz Tl | X
Op | _ | Tt Do Tz Toa| | bho (36)
My Iy Ty T3 Ta 0
Og Ty Ty Tz Ty 0
The expressions of X,; and 8, are obtained from Eq. (36) as follows
Xy = T11Xq0 + TiaXo (37)
Oy = T Xio + Trnlyo

Applying the boundary conditions, Eq. (35), to Eq. (37) and considering the conditions, Xjy # 0, 0}y # 0,
one obtains

TuwTyn — T T =0 (38)

This is the eigenvalue equation for the non-conservative stability of a multi-step cantilever column. In Eq.
(38), T;; (i,j = 1,2) can be determined from Eq. (30).

If a concentrated mass, m;, attached at the top of the multi-step column, for this case the eigenvalue
equation is

(Thy — m*T14)Tio — (Tor — my@*Tos) Ty = 0 (39)
2. A multi-step column with concentrated masses and spring supports shown in Fig. 3.
The boundary conditions for this case are given by
My = —K,1010
40
019 = —(m* — Kiy)X1o (40)
Mql = K(pLqu
41
qu = (meZ - KuL)qu ( )
Substituting Egs. (40) and (41) into Eq. (29) leads to
X1 Tw T Tz T Xio
Og1 _|Ta T Tz T Ovo (42)
—K 1041 I3y T Iz Ty —K 1010
(mpw* — Ko ) Xp1 Tn Tp Ty Tu| | —(mo® —Kg)Xp
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N;(0)

Fig. 3. A multi-step column with concentrated masses and spring supports.

The eigenvalue equation can be established from Eq. (42) as follows
Andan — Apda =0 (43)
where

Ay = (mpe?* — Ky) [T — (mio? — K ) Tia] — [T — (mio? — Kup) Tua]
A = (mpo? — Kp)[Ta — Kot T3] — (Tiy — K1 Taz)

Ay = K(pL[Tzl - (mla)z - Kul)T24] - [T.n - (mlwz - Kul)T34]

Az =Ko (T — K1 To3) — (T3o — K1 T33)

T, (i,j = 1,2,3,4) are the elements of [7]
[T} == [qum][T(qfl)sm] e [Tl.rm] (45)

[Tn] 1s given by Eq. (33).
The eigenvalue equations for other boundary conditions can be obtained similarly using the afore-
mentioned method.

3. Numerical example
A four-step cantilever column subjected to concentrated forces and variably distributed forces, as shown

in Fig. 1, is considered here to illustrate the application of the proposed method. The flexural stiffness, axial
force and mass per unit length of the ith step column are given by
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k() = K0 (14+5,7)

where
Li=L=Ly=Ly=L/4

B, =0, B,=005 B =01 p =01
N>(0) = 1.2N;(0),  N;(0) = 1.5N;(0), N4(0) = 2.5N(0)

5 (0) = 1.27,(0), 3(0) = 1.57,(0), 7i4(0) = 2.0, (0)

The procedure for determining the critical buckling force is as follows

1. Determination of the four linearly independent solutions.

If the concentrated forces are follower loads, and the variably distributed forces are conservative loads,
the solutions, S;(x) (i = 1,2, 3,4), of the ith step column are given by Eq. (21) when i = 1, and Eq. (8) when
i # 1, respectively.

If all the concentrated forces and variably distributed forces are follower loads, the solutions, S;(x)
(i=1,2,3,4), of the ith step column are given by Eq. (21) when i = 1, and Eq. (12) when i # 1, respectively.
2. Determination of the transfer matrix.

Using the four linearly independent solutions S;(x) (i = 1,2,3,4) and Egs. (24) and (25b) leads to [Tj].
Then the total transfer matrix [7] can be determined from Eq. (30).

3. Determination of the critical buckling force.

The boundary conditions are given by Egs. (34) and (35), and the eigenvalue equation for this case is Eq.
(38). Solving the eigenvalue equation one obtains
N (L4)

lcr

(0) = 49.0735 L(O) or N

ler

(0) = 8.7059—+=4

for the case that all the concentrated forces and variably distributed forces are follower loads and

NO K4 (L4)

lcr

(0) = 45.4196 L(O) or N{%(0) =8.0577-2-2

for the case that the concentrated forces are follower loads, but the variably distributed forces are con-
servative loads.

The FEM with cubic approximation of displacements is also adopted to compare the results obtained by
the proposed method. The column is divided into 40 uniform elements for the stability analysis. It is found:

Ka(Ls)
L b)

K (0
N{0) = 49073351 or b (0) = 87059
and

0 KL
Ny (0) :45,4194%), or Ny (0) 28-0577¥’



2398 Q.S. Li | International Journal of Solids and Structures 39 (2002) 2387-2399

Fig. 4. The influence of the end concentrated mass on the critical force. Note: M is the total mass of the multi-step column.

It is evident that the results obtained from the proposed method and FEM are in close agreement.
However, the number of segments used in the present transfer matrix method is much less than that used in
FEM analysis. It is revealed from our computation that the proposed method takes less computational time
than FEM, thus illustrating the present method is efficient, convenient and accurate.

If a concentrated mass m; is attached at the top of the multi-step column, the calculated critical forces for
the two types of follower force system all decrease as the ratio of m; to M increases, where M is the total
mass of the multi-step column. The influence of the end concentrated mass on the critical force is shown in
Fig. 4. It can be seen from Fig. 4 that the effect of the end concentrated mass on the critical force is sig-
nificant.

4. Conclusions

The governing differential equations for the non-conservative elastic stability of a non-uniform column
subjected to (i) concentrated follower forces and variably distributed follower forces, and (ii) concentrated
follower forces and variably distributed conservative forces, are established. The exact solutions of the
governing equations for the non-conservative stability of four kinds of one-step non-uniform columns are
derived for the first time. A new exact approach, which combines the exact solutions of one-step columns
and the transfer matrix method, is presented for the non-conservative stability analysis of multi-step non-
uniform columns. The advantage of the proposed method is that the eigenvalue equation for a multi-step
non-uniform column with any kinds of two end support configurations, an arbitrary number of spring
supports and concentrated masses can be conveniently determined from a second order determinant. As a
consequence, the decrease in the determinant order, as compared with previously developed procedures,
leads to significant savings in the computational effort. The numerical example shows that the results
obtained from the proposed method are in good agreement with those determined from FEM, but the
proposed method takes less computational time than FEM, thus illustrating the present procedure is an
exact and efficient method. It is shown through the numerical example that the critical buckling force of a
multi-step non-uniform column subjected to concentrated and variably distributed follower forces is greater
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than that of the column under concentrated follower forces and variably distributed conservative forces.
The effect of the end concentrated mass on the critical force is found to be significant.
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