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Abstract

The non-conservative stability of non-uniform columns under the combined action of concentrated and variably

distributed forces is solved analytically. Two types of follower force system are considered: (i) concentrated follower

forces and variably distributed follower forces, (ii) concentrated follower forces and variably distributed conservative

forces. The exact solutions for stability of four kinds of one-step non-uniform columns subjected to the two types of

follower force system are derived for the first time. Then a new exact approach, which combines the exact solutions of

one-step columns and the transfer matrix method, is presented for the non-conservative stability analysis of multi-step

non-uniform columns. The advantage of the proposed method is that the resulting eigenvalue equation for a multi-step

non-uniform column with any kinds of two end support configurations, an arbitrary number of spring supports and

concentrated masses can be conveniently determined from a second order determinant. The decrease in the determinant

order, as compared with previously developed procedures, leads to significant savings in the computational effort. A

numerical example shows that the results obtained from the proposed method are in good agreement with those de-

termined from the finite element method (FEM), but the proposed method takes less computational time than

FEM. � 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Non-conservative system; Stability; Buckling; Column; Exact solution; Transfer matrix method

1. Introduction

Lightweight structural members have been extensively used in many industrial fields such as in civil,
mechanical and aerospace engineering, and therefore the stability problems of such structural members are
of increasing importance. The applied loads are regarded as non-conservative forces if the work done by
them is path-dependent. Practical examples of non-conservative forces include: (1) the aerodynamic drag
forces acting on the body of rockets, missiles and other flight vehicles; (2) the forces acting on the rotor of a
gas turbine; (3) the forces acting on the links and elements in automatic control systems (Bolotin, 1963).
Meanwhile, a cantilever pipe conveying fluid is an example of a system subjected to follower forces (Sug-
iyama et al., 1999). Therefore, it is obvious that the concept of follower force is very important not only in
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aerospace engineering, but also in automobile engineering, and certainly also in the area of fluid-structures
interaction technologies (Sugiyama et al., 1999). In fact, elastic systems subjected to non-conservative forces
are always encountered in engineering practices. Thus, stability analysis of elastic structural members under
non-conservative forces is important in modern engineering applications.

The non-conservative stability of an elastic uniform bar was first investigated by Nikolai (1928). Beck
(1952) studied the stability of a uniform cantilever column subjected to a follower force at the free end.
After Beck’s work, many similar, but extended problems were investigated. For example, the stability
problem of an elastically restrained-free Beck’s column subjected to an end follower force was investigated
by Simkins and Anderson (1975). Sundarajan (1976) studied the influence of an elastic end support on the
stability of Beck’s column. Pedersen (1977) examined the effect of a concentrated mass attached to the
elastic support on the stability of Beck’s column. Chen and Ku (1991) studied the stability of a uniform
Timoshenko cantilever column subjected to follower force at the free end. McGill (1971) considered the
stability problem of a uniform cantilever column under distributed vertical and follower forces using the
Galerkin method. Sugiyama and Kawagoe (1975) studied the stability of elastic uniform columns with six
typical boundary conditions subjected to combined action of uniformly distributed vertical and tangential
forces by means of the finite difference method.

Much work has been done to investigate the stability of uniform structural members under follower
forces, however, non-conservative stability of non-uniform columns received relatively less attention in the
past. In fact, structural members with variable cross-section are frequently used in engineering practices to
optimise the distributions of weight and strength. Massey and Van der Meen (1971) studied the stability of
tapered cantilever columns subjected to a tangential tip load for breadth taper only. The effect of taper on
the non-conservative stability of columns was studied by Sankaran and Rao (1976) using the finite element
method (FEM). The stability problem of a non-uniform Timoshenko beam with clamped-free and elasti-
cally restrained-free boundary conditions subjected to three types of follower forces was solved by Irie et al.
(1980). Lee and Kuo (1991) investigated the elastic stability of three different tapered columns subjected to
uniformly distributed follower forces by dividing a non-uniform column into several uniform segments to
simplify the stability analysis. It is revealed from the above cited references that the previous studies have
generally concentrated their investigations on the stability of columns subjected to uniformly distributed
follower forces. The stability problem of non-uniform columns, especially multi-step non-uniform columns,
under variably distributed follower forces has rarely been studied. It is noted that the exact solution for
such a problem has not been proposed in the past.

Literature survey indicates that the non-conservative stability of multi-step non-uniform columns was
usually solved using numerical or approximate methods. In this paper, the non-conservative stability of
non-uniform columns under the combined action of concentrated and variably distributed forces is solved
analytically. Two types of follower force system are considered in this paper: (i) concentrated follower
forces and variably distributed follower forces, (ii) concentrated follower forces and variably distributed
conservative forces. The exact solutions for stability of four kinds of one-step non-uniform columns
subjected to the two types of follower force system are derived for the first time. Then, a new exact
approach, which combines the closed-form stability solutions for a one-step non-uniform column and the
transfer matrix method, is proposed for the non-conservative stability analysis of multi-step non-uniform
columns. The advantage of the proposed method is that the resulting eigenvalue equation for a multi-step
non-uniform column with any kinds of two end support configurations, an arbitrary number of spring
supports and concentrated masses can be conveniently determined from a second order determinant. As a
consequence, the decrease in the determinant order, as compared with previously developed procedures,
leads to significant savings in the computational effort. Numerical example demonstrates that the results
obtained from the proposed method are in good agreement with those determined from FEM, but the
proposed method takes less computational time than FEM, illustrating the present method is exact and
efficient.
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2. Theory

A multi-step non-uniform column under the combined action of concentrated follower forces at the end
of each step and variably distributed follower forces along the column is shown in Fig. 1. The governing
differential equation for stability of the ith step column can be written as

d2

dx2
KiðxÞ

d2XiðxÞ
dx2

� �
þ NiðxÞ

d2XiðxÞ
dx2

� mðxÞx2XiðxÞ ¼ 0 ð1Þ

where X ðxÞ is the mode shape function and x is the circular natural frequency, KðxÞ, NðxÞ and mðxÞ are the
flexural stiffness, axial force and mass per unit length, respectively, the origin of the co-ordinate is set at the
top end of the ith step column (Fig. 1).

If the variably distributed forces are the conservative loads, Eq. (1) should be replaced by

d2

dx2
KiðxÞ

d2XiðxÞ
dx2

� �
þ d

dx
NiðxÞ

dXiðxÞ
dx

� �
� mðxÞx2XiðxÞ ¼ 0 ð2Þ

In this paper, two types of follower force system acting on multi-step non-uniform columns are considered:
(i) concentrated follower forces and variably distributed follower forces (type 1), (ii) concentrated follower
forces and variably distributed conservative forces (type 2). The governing differential equations for the
non-conservative stability of a non-uniform column subjected to the type 1 and type 2 kinds of follower
force are Eqs. (1) and (2), respectively.

The general solutions of Eqs. (1) and (2) can be expressed in the following form

XiðxÞ ¼ C1iS1iðxÞ þ C2iS2iðxÞ þ C3iS3iðxÞ þ C4iS4iðxÞ ð3Þ

where SjiðxÞ and Cji (j ¼ 1; 2; 3; 4) are linearly independent solutions and integral constants of Eq. (1) or Eq.
(2), respectively. Obviously, it is difficult to derive the closed-form solutions to Eq. (1) or Eq. (2) for general
case, since SjiðxÞ are dependent on the expressions of KiðxÞ, NiðxÞ and miðxÞ. The analytical solutions may be
obtained by means of reasonable selections for KiðxÞ, NiðxÞ and miðxÞ. As suggested by Li et al. (1994, 1998)
and Li (2000), the functions for describing the variations of KðxÞ and mðxÞ for many non-uniform structural
members are power functions and exponential functions. Hence, the following four cases of KiðxÞ, NiðxÞ and
miðxÞ which cover many cases of non-uniform columns are considered.

Case 1. The distributions of flexural stiffness, axial force and mass per unit length of the ith step column
are described by the following power functions

Fig. 1. A multi-step column.

Q.S. Li / International Journal of Solids and Structures 39 (2002) 2387–2399 2389



KiðxÞ ¼ Kið0Þ 1þ bi
x
Li

� �nþ2

NiðxÞ ¼ Nið0Þ 1þ bi
x
Li

� �nþ1

miðxÞ ¼ mið0Þ 1þ bi
x
Li

� �n

9>>>>>=
>>>>>;

ð4Þ

where Kið0Þ, Nið0Þ and mið0Þ are the flexural stiffness, axial force and mass per unit length of the ith step
column at x ¼ 0, respectively, b and n are parameters that can be determined by the values of KðxÞ, NðxÞ
and mðxÞ at x ¼ Li=2 and Li or at the other control sections, Li is the length of the ith step column.

The four linearly independent solutions of Eq. (2) for this case are found as

S1iðxÞ ¼ g1iJnðg1iÞ
S2iðxÞ ¼ g1iYnðg1iÞ
S3iðxÞ ¼ g2iInðg2iÞ
S4iðxÞ ¼ g2iKnðg2iÞ

9>>=
>>; n ¼ integer ð5Þ

where Jnð�Þ, Ynð�Þ, Inð�Þ and Knð�Þ are Bessel functions of the first, second, third and fourth kinds, respec-
tively, g1i and g2i are given by

g1i ¼ k1i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ bi

x
Li

q
; g2i ¼ k2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ bi

x
Li

q
;

k1i ¼ 2
b

ffiffiffiffiffi
z1i

p
; z1i ¼ Nei þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N 2

ei þ x4
ei

p
k2i ¼ 2

bi

ffiffiffiffiffi
z2i

p
; z2i ¼ Nei �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N 2

ei þ x4
ei

p
Nei ¼ Nið0Þ

2Kið0Þ ; x4
ei ¼

mið0Þx2

Kið0Þ

9>>>>>>=
>>>>>>;

ð6Þ

Case 2. KiðxÞ, NiðxÞ and miðxÞ are given by

KiðxÞ ¼ Kið0Þ 1þ bi
x
Li

� �nþ4

NiðxÞ ¼ Nið0Þ 1þ bi
x
Li

� �nþ2

miðxÞ ¼ mið0Þ 1þ bi
x
Li

� �n

9>>>>>=
>>>>>;

ð7Þ

The four linearly independent solutions of Eq. (2) for this case are

Sji ¼ 1

�
þ bi

x
Li


cji

j ¼ 1; 2; 3; 4 ð8Þ

where

c1i ¼ � nþ1
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ1Þ2

4
þ xfi � Nfi

q
c2i ¼ � nþ1

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ1Þ2

4
þ xfi � Nfi

q
c3i ¼ � nþ1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ1Þ2

4
� xfi � Nfi

q
c4i ¼ � nþ1

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ1Þ2

4
� xfi � Nfi

q
xfi ¼ x4

di þ N 2
fi; xdi ¼ mið0Þx2L4

i

b4
i Kið0Þ

Nfi ¼ 1
2
ðNdi � n� 2Þ; Ndi ¼ Nið0ÞL2

i

b2
i Kið0Þ

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

ð9Þ

2390 Q.S. Li / International Journal of Solids and Structures 39 (2002) 2387–2399



The solutions expressed by Eq. (8) are valid for the case that cji (j ¼ 1; 2; 3; 4) are real value roots only. It
can be seen from Eq. (9) that since xfi > Nf , c1 and c2 are real value roots. If c3i and c4i are complex values,
S3iðxÞ and S4iðxÞ should be written as

S3iðxÞ ¼ 1

�
þ bi

x
Li


�ðnþ1Þ=2

sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xfi þ Nfi �

ðnþ 1Þ2

4

s
ln 1

�
þ bi

x
Li



ð10Þ

S4iðxÞ ¼ 1

�
þ bi

x
Li


�ðnþ1Þ=2

cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xfi þ Nfi �

ðnþ 1Þ2

4

s
ln 1

�
þ bi

x
Li



ð11Þ

The four linearly independent solutions of Eq. (1) for this case can be written in the form

XiðniÞ ¼
X4

j¼1

Cji expðcjiniÞ ð12Þ

where

ni ¼ ln 1

�
þ bi

x
Li




c1i;2i;3i;4i ¼ � 1

2
ni
�

þ 4�
ffiffiffiffi
fi

p �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
ni þ 4�

ffiffiffiffi
fi

p� �2

� 1

2
y1i �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y21i � 4ei

q� 
s

e1i ¼ � a2
1i

b4
i

; a2
1i ¼

mið0Þx2L4
i

Kið0Þ
; fi ¼ nþ 4þ y1i �

a2i

b2
i

; a2i ¼
Nið0ÞL2

i

Kið0Þ

y1i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� qi

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qi
2

� �2

þ pi
3

� �3
r

3

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� qi

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qi
2

� �2

þ pi
3

� �3
r

3

s
; pi ¼

4a2
1i

b4
i

qi ¼
a2
1i

b4
i

4 n

 "
þ 4� a1i

b2
i

!
þ 4ci

3

#
� 2c3i

27
; ci ¼ ðnþ 4Þðnþ 3Þ þ a2i

b2
i

ð13Þ

Case 3. The distributions of flexural stiffness, axial force and mass per unit length are described by the
following exponential functions

KiðxÞ ¼ Kið0Þ exp bi x
Li

� �
NiðxÞ ¼ Nið0Þ exp bi x

Li

� �
miðxÞ ¼ mið0Þ exp bi x

Li

� �
9>>>=
>>>;

ð14Þ

The four linearly independent solutions of Eq. (2) for this case are derived as follows

SjiðxÞ ¼ exp cji
x
Li

� �
c1i ¼ bi

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2i
4
� z2i

q
c2i ¼ bi

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2i
4
� z2i

q
c3i ¼ bi

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2i
4
� z1i

q
c4i ¼ bi

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2i
4
� z1i

q

9>>>>>>>>>>=
>>>>>>>>>>;

ð15Þ

where z1i and z2i are given by Eq. (6).
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It is evident that the above solutions are only valid for the case that cji (j ¼ 1; 2; 3; 4) are real value roots.
Since z2i < 0, c1i and c2i are real value roots. If b2

i =4 < z1i, c3i and c4i are complex value roots, for this case
S3iðxÞ and S4iðxÞ should be determined by

S3iðxÞ ¼ exp
bix
2Li

� 

sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z1i �

b2
i

4

r
x
Li

 !
ð16Þ

S4iðxÞ ¼ exp
bix
2Li

� 

cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z1i �

b2
i

4

r
x
Li

 !
ð17Þ

The four linearly independent solutions of Eq. (1) for case 3 can also be expressed by Eq. (12), but the
parameters involved should be determined by the following equations

c1i;2i;3i;4i ¼ � 1

2

bi
Li

 
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y1i �

Nið0Þ
Kið0Þ

s !
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4

bi
Li

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y1i �

Nið0Þ
Kið0Þ

s !2

� 1

2
y1i �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y21i � 4ei

q� 
vuut ð18Þ

where ei ¼ �ðmið0Þx2=Kið0ÞÞ, y1i is given by Eq. (13), but the parameters involved should be determined by

qi ¼ 4ei di
3
� Nið0Þ

Kið0Þ

h i
� 2d3

i
27

pi ¼ 4ei � d3
i
3
; di ¼ bi

Li

� �2

þ Nið0Þ
Kið0Þ

9=
; ð19Þ

If 4bi=Li > 2di, the sign before
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y1i � ðNið0Þ=Kið0ÞÞ

p
should be the same as that before

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y1i � 4ei

p
, otherwise

the signs must be different between each other.

Case 4: KiðxÞ ¼ Ki; NiðxÞ ¼ Ni; miðxÞ ¼ mi ð20Þ

This special case represents a stepped uniform column. The four linearly independent solutions of Eqs.
(1) and (2), which are the same for this case, are found as

S1iðxÞ ¼ sin k1ix
S2iðxÞ ¼ cos k1ix
S3iðxÞ ¼ sinh k2ix
S4iðxÞ ¼ cosh k2ix

9>>=
>>; ð21Þ

where

k1i ¼ k1i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ki

k1i

� �4
r

þ 1

s

k2i ¼ k1i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ki

k1i

� �4
r

� 1

s

k2
1i ¼ Ni

2Ki
; k2

i ¼ mix2

Ki

9>>>>>>>=
>>>>>>>;

ð22Þ

If the distributions of flexural stiffness, axial force and mass per unit length of the ith step column do not
obey the assumed expressions given in the above four cases, this step column should be divided into several
segments such that the distributions of flexural stiffness, axial force and mass intensity in each of the
segments may match accurately or approximately one of the expressions described in the four cases. The
eigenvalue equation for the non-conservative stability of a multi-step non-uniform column can be conve-
niently established using the general solution, Eq. (3), the boundary conditions and the transfer matrix
method to be introduced below. The FEM is usually considered as the most general approach for both
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static and dynamic analysis of structural systems. However, as pointed out by Sato (1980), the transfer
matrix method has some advantages in computation: ease of programming, small memory requirements,
and availability of ready-made transfer matrix catalogues for various elements. It will be shown through a
numerical example in this paper that one of the advantages of the present transfer matrix method is that the
total number of segments required could be much less than that normally needed in FEM analysis.

Using the general solution, Eq. (3), the mode shape functions of displacement XiðxÞ, rotation hiðxÞ,
bending moment MiðxÞ and shear force QiðxÞ can be expressed in a matrix form as follows

XiðxÞ
hiðxÞ
MiðxÞ
QiðxÞ

2
664

3
775 ¼ SiðxÞ½ 


C1i

C2i

C3i

C4i

2
664

3
775 ð23Þ

where

½SiðxÞ
 ¼

S1iðxÞ S2iðxÞ S3iðxÞ S4iðxÞ
S0
1iðxÞ S0

2iðxÞ S0
3iðxÞ S0

4iðxÞ
�KiðxÞS00

1iðxÞ �KiðxÞS00
2iðxÞ �KiðxÞS00

3iðxÞ �KiðxÞS00
4iðxÞ

�½KiðxÞS1iðxÞ
000 �½KiðxÞS2iðxÞ
000 �½KiðxÞS3iðxÞ
000 �½KiðxÞS4iðxÞ
000

2
664

3
775 ð24Þ

The relation between the parameters Xi1, hi1, Mi1 and Qi1 at the end x ¼ Li and the parameters Xi0, hi0, Mi0

and Qi0 at the end x ¼ 0 of the ith step column can be expressed as

Xi1

hi1

Mi1

Qi1

2
664

3
775 ¼ ½Ti


Xi0

hi0

Mi0

Qi0

2
664

3
775 ð25aÞ

where

½Ti
 ¼ ½Siðxi1Þ
½Siðxi0Þ
�1 ð25bÞ

Xi1 ¼ XiðLiÞ; hi1 ¼ hiðLiÞ; Mi1 ¼ MiðLiÞ; Qi1 ¼ QiðLiÞ

Xi0 ¼ Xið0Þ; hi0 ¼ hið0Þ; Mi0 ¼ Mið0Þ; Qi0 ¼ Qið0Þ
[Ti] is called the transfer matrix because it transfers the parameters at the end x ¼ xi0 to those at the end
x ¼ xi1. It is well known that the displacement, rotation, bending moment and shear force at the common
interface of two neighbouring steps are required to be continuous, i.e.,

Xi0 ¼ Xði�1Þ1; hi0 ¼ hði�1Þ1; Mi0 ¼ Mði�1Þ1; Qi0 ¼ Qði�1Þ1 ð26Þ

Substituting Eq. (26) into Eq. (25a) leads to

Xi1

hi1

Mi1

Qi1

2
664

3
775 ¼ ½Ti


Xði�1Þ1
hði�1Þ1
Mði�1Þ1
Qði�1Þ1

2
664

3
775 ð27Þ

Using Eqs. (25a) and (27) yields

Xi1

hi1

Mi1

Qi1

2
664

3
775 ¼ ½Ti
½Ti�1


Xði�1Þ0
hði�1Þ0
Mði�1Þ0
Qði�1Þ0

2
664

3
775 ð28Þ
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The relation between the parameters Xq1, hq1, Mq1 and Qq1 at the end of the last step column x ¼ Lq and the
parameters X10, h10, M10 and Q10 at the end of the first step column x ¼ 0 can be established using Eqs. (25a)
and (27) repeatedly as follows

Xq1

hq1

Mq1

Qq1

2
664

3
775 ¼ ½T 


X10

h10

M10

Q10

2
664

3
775 ð29Þ

where

½T 
 ¼ ½Tq
½Tq�1
 � � � ½T2
½T1
 ð30Þ

and [T ] has the following form

½T 
 ¼

T11 T12 T13 T14

T21 T22 T23 T24

T31 T32 T33 T34

T41 T42 T43 T44

2
664

3
775 ð31Þ

The elements Tij (i; j ¼ 1; 2; 3; 4) of [T ] can be determined from Eq. (30).
If there are a lumped mass, a rotational spring (with stiffness Kui) and a translational spring (with

stiffness Kui) attached at the interface of the (i� 1)th step column and the ith step column, the displacement,
rotation, bending moment and shear force are required to satisfy the following conditions (Fig. 2)

Xi0 ¼ Xði�1Þ1

hi0 ¼ hði�1Þ1

Mi0 ¼ Mði�1Þ1 � Kuihði�1Þ1

Qi0 ¼ Qði�1Þ1 � ðmix2 � KuiÞXði�1Þ1

9>>>=
>>>;

ð32Þ

Fig. 2. The forces acting on the boundary between the (i� 1)th step column and the ith step column.
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For this case the transfer matrix [Ti] should be replaced by

½Tism
 ¼

1 0 0 0
0 1 0 0
0 �Kui 1 0

�ðmix2 � KuiÞ 0 0 1

2
664

3
775½Ti
 ð33Þ

The eigenvalue equation for the non-conservative stability of a multi-step non-uniform column can be
established using Eq. (29) and the specific boundary conditions as follows

1. A multi-step cantilever column shown in Fig. 1.
The boundary condition for this case are given by

M10 ¼ 0; Q10 ¼ 0 ð34Þ

Xq1 ¼ 0; hq1 ¼ 0 ð35Þ
Applying the boundary conditions, Eq. (34), to Eq. (29) leads to

Xq1

hq1

Mq1

Qq1

2
664

3
775 ¼

T11 T12 T13 T14

T21 T22 T23 T24

T31 T32 T33 T34

T41 T42 T43 T44

2
664

3
775

X10

h10

0
0

2
664

3
775 ð36Þ

The expressions of Xq1 and hq1 are obtained from Eq. (36) as follows

Xq1 ¼ T11X10 þ T12X10

hq1 ¼ T21X10 þ T22h10

 
ð37Þ

Applying the boundary conditions, Eq. (35), to Eq. (37) and considering the conditions, X10 6¼ 0, h10 6¼ 0,
one obtains

T11T22 � T12T21 ¼ 0 ð38Þ
This is the eigenvalue equation for the non-conservative stability of a multi-step cantilever column. In Eq.
(38), Tij (i; j ¼ 1; 2) can be determined from Eq. (30).

If a concentrated mass, m1, attached at the top of the multi-step column, for this case the eigenvalue
equation is

ðT11 � m1x
2T14ÞT12 � ðT21 � m1x

2T24ÞT22 ¼ 0 ð39Þ
2. A multi-step column with concentrated masses and spring supports shown in Fig. 3.

The boundary conditions for this case are given by

M10 ¼ �Ku1h10

Q10 ¼ �ðm1x2 � Ku1ÞX10

 
ð40Þ

Mq1 ¼ KuLhq1

Qq1 ¼ ðmLx2 � KuLÞXq1

 
ð41Þ

Substituting Eqs. (40) and (41) into Eq. (29) leads to

Xq1

hq1

�KuLhq1

ðmLx2 � KuLÞXq1

2
664

3
775 ¼

T11 T12 T13 T14

T21 T22 T23 T24

T31 T32 T33 T34

T41 T42 T43 T44

2
664

3
775

X10

h10

�Ku1h10

�ðm1x2 � Ku1ÞX10

2
664

3
775 ð42Þ
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The eigenvalue equation can be established from Eq. (42) as follows

A11A22 � A12A21 ¼ 0 ð43Þ

where

A11 ¼ ðmLx2 � KuLÞ½T11 � ðm1x2 � Ku1ÞT14
 � ½T41 � ðm1x2 � Ku1ÞT44

A12 ¼ ðmLx2 � KuLÞ½T12 � Ku1T13
 � ðT42 � Ku1T43Þ
A21 ¼ KuL½T21 � ðm1x2 � Ku1ÞT24
 � ½T31 � ðm1x2 � Ku1ÞT34

A22 ¼ KuLðT22 � Ku1T23Þ � ðT32 � Ku1T33Þ

9>>=
>>; ð44Þ

Tij (i; j ¼ 1; 2; 3; 4) are the elements of [T ]

½T 
 ¼ ½Tqsm
½Tðq�1Þsm
 � � � ½T1sm
 ð45Þ

[Tism] is given by Eq. (33).
The eigenvalue equations for other boundary conditions can be obtained similarly using the afore-

mentioned method.

3. Numerical example

A four-step cantilever column subjected to concentrated forces and variably distributed forces, as shown
in Fig. 1, is considered here to illustrate the application of the proposed method. The flexural stiffness, axial
force and mass per unit length of the ith step column are given by

Fig. 3. A multi-step column with concentrated masses and spring supports.
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KiðxÞ ¼ Kið0Þ 1þ bi
x
Li

� �5

NiðxÞ ¼ Nið0Þ 1þ bi
x
Li

� �3

miðxÞ ¼ mið0Þ 1þ bi
x
Li

� � ði ¼ 1; 2; 3; 4Þ

where

L1 ¼ L2 ¼ L3 ¼ L4 ¼ L=4

b1 ¼ 0; b2 ¼ 0:05; b3 ¼ 0:1; b4 ¼ 0:1

K2ð0Þ ¼ 1:2K1ð0Þ; K3ð0Þ ¼ 1:8K1ð0Þ; K4ð0Þ ¼ 3:5K1ð0Þ

N2ð0Þ ¼ 1:2N1ð0Þ; N3ð0Þ ¼ 1:5N1ð0Þ; N4ð0Þ ¼ 2:5N1ð0Þ

m2ð0Þ ¼ 1:2m1ð0Þ; m3ð0Þ ¼ 1:5m1ð0Þ; m4ð0Þ ¼ 2:0m1ð0Þ
The procedure for determining the critical buckling force is as follows

1. Determination of the four linearly independent solutions.
If the concentrated forces are follower loads, and the variably distributed forces are conservative loads,

the solutions, SiðxÞ (i ¼ 1; 2; 3; 4), of the ith step column are given by Eq. (21) when i ¼ 1, and Eq. (8) when
i 6¼ 1, respectively.

If all the concentrated forces and variably distributed forces are follower loads, the solutions, SiðxÞ
(i ¼ 1; 2; 3; 4), of the ith step column are given by Eq. (21) when i ¼ 1, and Eq. (12) when i 6¼ 1, respectively.
2. Determination of the transfer matrix.

Using the four linearly independent solutions SiðxÞ (i ¼ 1; 2; 3; 4) and Eqs. (24) and (25b) leads to [TI].
Then the total transfer matrix [T ] can be determined from Eq. (30).
3. Determination of the critical buckling force.

The boundary conditions are given by Eqs. (34) and (35), and the eigenvalue equation for this case is Eq.
(38). Solving the eigenvalue equation one obtains

N ð1Þ
1;crð0Þ ¼ 49:0735

K1ð0Þ
L

; or N ð1Þ
1;crð0Þ ¼ 8:7059

K4ðL4Þ
L

;

for the case that all the concentrated forces and variably distributed forces are follower loads and

N ð2Þ
1;crð0Þ ¼ 45:4196

K1ð0Þ
L

; or N ð2Þ
1;crð0Þ ¼ 8:0577

K4ðL4Þ
L

;

for the case that the concentrated forces are follower loads, but the variably distributed forces are con-
servative loads.

The FEM with cubic approximation of displacements is also adopted to compare the results obtained by
the proposed method. The column is divided into 40 uniform elements for the stability analysis. It is found:

N ð1Þ
1;crfð0Þ ¼ 49:0733

K1ð0Þ
L

; or N ð1Þ
1;crfð0Þ ¼ 8:7059

K4ðL4Þ
L

;

and

N ð2Þ
1;crfð0Þ ¼ 45:4194

K1ð0Þ
L

; or N ð2Þ
1;crfð0Þ ¼ 8:0577

K4ðL4Þ
L

;
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It is evident that the results obtained from the proposed method and FEM are in close agreement.
However, the number of segments used in the present transfer matrix method is much less than that used in
FEM analysis. It is revealed from our computation that the proposed method takes less computational time
than FEM, thus illustrating the present method is efficient, convenient and accurate.

If a concentrated mass m1 is attached at the top of the multi-step column, the calculated critical forces for
the two types of follower force system all decrease as the ratio of m1 to M increases, where M is the total
mass of the multi-step column. The influence of the end concentrated mass on the critical force is shown in
Fig. 4. It can be seen from Fig. 4 that the effect of the end concentrated mass on the critical force is sig-
nificant.

4. Conclusions

The governing differential equations for the non-conservative elastic stability of a non-uniform column
subjected to (i) concentrated follower forces and variably distributed follower forces, and (ii) concentrated
follower forces and variably distributed conservative forces, are established. The exact solutions of the
governing equations for the non-conservative stability of four kinds of one-step non-uniform columns are
derived for the first time. A new exact approach, which combines the exact solutions of one-step columns
and the transfer matrix method, is presented for the non-conservative stability analysis of multi-step non-
uniform columns. The advantage of the proposed method is that the eigenvalue equation for a multi-step
non-uniform column with any kinds of two end support configurations, an arbitrary number of spring
supports and concentrated masses can be conveniently determined from a second order determinant. As a
consequence, the decrease in the determinant order, as compared with previously developed procedures,
leads to significant savings in the computational effort. The numerical example shows that the results
obtained from the proposed method are in good agreement with those determined from FEM, but the
proposed method takes less computational time than FEM, thus illustrating the present procedure is an
exact and efficient method. It is shown through the numerical example that the critical buckling force of a
multi-step non-uniform column subjected to concentrated and variably distributed follower forces is greater

Fig. 4. The influence of the end concentrated mass on the critical force. Note: M is the total mass of the multi-step column.
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than that of the column under concentrated follower forces and variably distributed conservative forces.
The effect of the end concentrated mass on the critical force is found to be significant.
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